If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x^2-x-4)+(x^2-2x-3)+(2x^2+3x+5)=0
We get rid of parentheses
7x^2+x^2+2x^2-x-2x+3x-4-3+5=0
We add all the numbers together, and all the variables
10x^2-2=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $
| 5k^2+3=-50 | | 4(x-9)+6(-5-12x)=x-4+1-6x | | -1/2x=11 | | 3n^2+11n-20=0 | | 5(6z+1)-7=148 | | 6/6b+4=2/b-4 | | (3x+21/6)+(x+21/5)=14 | | 3n^2-20=-11n | | 51-a=21+a | | f(-3)=-9+3 | | -6(12x-5)=-72x-64 | | b/13-3b/13=4/13 | | -2.8=z-0.5 | | (x+3)/14=(3/7)+((x-9)/6) | | 0.3(10)+0.15x=0.1(10)+0.2x | | a²+3=28 | | 7(-3y+2)=8(y-2) | | -12(5-6x)-10=-12(5+7x)-10 | | 9x+3(×-4)=10(×-5)+7 | | -12(5-6x)-10=-12(5+7 | | 4x-7x+64=5x+32 | | -5/2=3/4*z+1/2 | | 7(-3y+2)=8(3y-2 | | 4(n-3)+4(3+8n)=-4n-4n | | 3x-2-x=10 | | -1/2x+12=23 | | -6x-12+8x=12-4x | | 9x+4x-6x=8+6 | | x/4=-5/7 | | 2/2x=10 | | 6x-(4x+5)=8x-23 | | 1.5(3x+9)=-2(2x+6) |